Clustering Big Data

•	Overview	2
•	K-Means Clustering	3
	• Basic Algorithm:	3
	• How to MapReduce K-means?	3

• Overview

- **Clustering** divides a dataset into groups of data items having the same similarity.
- It requires a **similarity measure.**
 - Distances are normally used to measure the similarity or dissimilarity between two data objects.
 - Example: Euclidean distance:

distance(i,j) =
$$\sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + \dots + |x_n - x_{jn}|^2)}$$

- Clustering results are crucially dependent on the measure of similarity (or distance) between "points" to be clustered
- A cluster is a group of data items similar (or related) to one another within the same group dissimilar (or unrelated) to the data items in other groups.
- Clustering is an unsupervised learning method:
 - Data items in a dataset are not labelled do not require predefined classes.
- Clustering analysis:
 - Given a set of data points, each described by a set of attributes, find clusters such that:
 - Inter-cluster similarity is maximized
 - Intra-cluster similarity is minimized

• K-Means Clustering

- Basic Algorithm:
 - Partition {x1,...,xn} into K clusters-K is predefined
 - Initialization
 - Specify the initial cluster centers (centroids)
 - Iteration until no change
 - Classify:
 - For each object xi
 - Calculate the distances between xi and the K centroids
 - (Re)assign xi to the cluster whose centroid is the closest to xi
 - Re-center: Update the cluster centroids based on the current assignment
- How to MapReduce K-means? [Apache Mahout Essentials, By Jayani Withanawasam}

- Iteratively, run the MapReduce phase to implement K-Means until the termination criteria is reached - convergence or the number of iterations is reached.
- The Hadoop job splits the dataset into chucks, which are processed by map tasks in a parallel.
- If the following example:
 - The dataset is split across nodes in the cluster by assigning:
 - d1 and d2 to node 1 and
 - \circ d3 and d4 to node 2
 - The map function:
 - Each map function has its data shuck and the list of initial centroids c1, c2, and c3.
 - Compute the distance from each data point in the shuck to all the initial centroids, and the data point is assigned to the closest centroid.
 - The map function outputs (**key = centroid id, value = data point**) pair to the reduce phase.
 - The Reduce function:
 - The data points that belong to a particular centroid are processed in a single node in the reduce phase.
 - Re-center: **new centroid** points are computed using the average of the coordinates of all data points in that cluster.
 - $\circ~$ The new centroids are then fed back to the next iteration.

